How to Design an Interactive Dash and Plotly Dashboard with Callback Mechanisms for Local and Online Deployment?


app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])


app.layout = dbc.Container([
   dbc.Row([
       dbc.Col([
           html.H1("📊 Advanced Financial Dashboard", className="text-center mb-4"),
           html.P(f"Interactive dashboard with {len(df)} data points across {len(stock_names)} stocks",
                  className="text-center text-muted"),
           html.Hr()
       ])
   ]),
  
   dbc.Row([
       dbc.Col([
           dbc.Card([
               dbc.CardBody([
                   html.H5("🎛️ Dashboard Controls", className="card-title"),
                  
                   html.Label("Select Stocks:", className="fw-bold mt-3"),
                   dcc.Dropdown(
                       id='stock-dropdown',
                       options=[{'label': f'{stock} ({base_prices[stock]})', 'value': stock}
                               for stock in stock_names],
                       value=['AAPL', 'GOOGL'], 
                       multi=True,
                       placeholder="Choose stocks to analyze..."
                   ),
                  
                   html.Label("Date Range:", className="fw-bold mt-3"),
                   dcc.DatePickerRange(
                       id='date-picker-range',
                       start_date="2023-06-01",
                       end_date="2024-06-01",
                       display_format="YYYY-MM-DD",
                       style={'width': '100%'}
                   ),
                  
                   html.Label("Chart Style:", className="fw-bold mt-3"),
                   dcc.RadioItems(
                       id='chart-type',
                       options=[
                           {'label': ' Line Chart', 'value': 'line'},
                           {'label': ' Area Chart', 'value': 'area'},
                           {'label': ' Scatter Plot', 'value': 'scatter'}
                       ],
                       value="line",
                       labelStyle={'display': 'block', 'margin': '5px'}
                   ),
                  
                   dbc.Checklist(
                       id='show-ma',
                       options=[{'label': ' Show Moving Average', 'value': 'show'}],
                       value=[],
                       style={'margin': '10px 0'}
                   ),
               ])
           ], className="h-100")
       ], width=3),
      
       dbc.Col([
           dbc.Card([
               dbc.CardHeader("📈 Stock Price Analysis"),
               dbc.CardBody([
                   dcc.Graph(id='main-chart', style={'height': '450px'})
               ])
           ])
       ], width=9)
   ], className="mb-4"),
  
   dbc.Row([
       dbc.Col([
           dbc.Card([
               dbc.CardBody([
                   html.H4(id="avg-price", className="text-primary mb-0"),
                   html.Small("Average Price", className="text-muted")
               ])
           ])
       ], width=3),
       dbc.Col([
           dbc.Card([
               dbc.CardBody([
                   html.H4(id="total-volume", className="text-success mb-0"),
                   html.Small("Total Volume", className="text-muted")
               ])
           ])
       ], width=3),
       dbc.Col([
           dbc.Card([
               dbc.CardBody([
                   html.H4(id="price-range", className="text-info mb-0"),
                   html.Small("Price Range", className="text-muted")
               ])
           ])
       ], width=3),
       dbc.Col([
           dbc.Card([
               dbc.CardBody([
                   html.H4(id="data-points", className="text-warning mb-0"),
                   html.Small("Data Points", className="text-muted")
               ])
           ])
       ], width=3)
   ], className="mb-4"),
  
   dbc.Row([
       dbc.Col([
           dbc.Card([
               dbc.CardHeader("📊 Trading Volume"),
               dbc.CardBody([
                   dcc.Graph(id='volume-chart', style={'height': '300px'})
               ])
           ])
       ], width=6),
       dbc.Col([
           dbc.Card([
               dbc.CardHeader("📉 Returns Distribution"),
               dbc.CardBody([
                   dcc.Graph(id='returns-chart', style={'height': '300px'})
               ])
           ])
       ], width=6)
   ], className="mb-4"),
  
   dbc.Row([
       dbc.Col([
           dbc.Card([
               dbc.CardHeader("📋 Latest Stock Data"),
               dbc.CardBody([
                   dash_table.DataTable(
                       id='data-table',
                       columns=[
                           {'name': 'Stock', 'id': 'Stock'},
                           {'name': 'Date', 'id': 'Date'},
                           {'name': 'Price ($)', 'id': 'Price', 'type': 'numeric',
                            'format': {'specifier': '.2f'}},
                           {'name': 'Volume', 'id': 'Volume', 'type': 'numeric',
                            'format': {'specifier': ',.0f'}},
                           {'name': 'Daily Return (%)', 'id': 'Returns', 'type': 'numeric',
                            'format': {'specifier': '.2%'}}
                       ],
                       style_cell={'textAlign': 'center', 'fontSize': '14px', 'padding': '10px'},
                       style_header={'backgroundColor': 'rgb(230, 230, 230)', 'fontWeight': 'bold'},
                       style_data_conditional=[
                           {
                               'if': {'filter_query': '{Returns} > 0'},
                               'backgroundColor': '#d4edda'
                           },
                           {
                               'if': {'filter_query': '{Returns} < 0'},
                               'backgroundColor': '#f8d7da'
                           }
                       ],
                       page_size=15,
                       sort_action="native",
                       filter_action="native"
                   )
               ])
           ])
       ])
   ])
], fluid=True)



Source link

  • Related Posts

    Ensuring AI Safety in Production: A Developer’s Guide to OpenAI’s Moderation and Safety Checks

    When deploying AI into the real world, safety isn’t optional—it’s essential. OpenAI places strong emphasis on ensuring that applications built on its models are secure, responsible, and aligned with policy.…

    This AI Research Proposes an AI Agent Immune System for Adaptive Cybersecurity: 3.4× Faster Containment with

    Can your AI security stack profile, reason, and neutralize a live security threat in ~220 ms—without a central round-trip? A team of researchers from Google and University of Arkansas at…

    Leave a Reply

    Your email address will not be published. Required fields are marked *