Vintix: Scaling In-Context Reinforcement Learning for Generalist AI Agents

Developing AI systems that learn from their surroundings during execution involves creating models that adapt dynamically based on new information. In-Context Reinforcement Learning (ICRL) follows this approach by allowing AI…

Advancing Scalable Text-to-Speech Synthesis: Llasa’s Transformer-Based Framework for Improved Speech Quality and Emotional Expressiveness

Recent advancements in LLMs, such as the GPT series and emerging “o1” models, highlight the benefits of scaling training and inference-time computing. While scaling during training—by increasing model size and…

Shanghai AI Lab Releases OREAL-7B and OREAL-32B: Advancing Mathematical Reasoning with Outcome Reward-Based Reinforcement Learning

Mathematical reasoning remains a difficult area for artificial intelligence (AI) due to the complexity of problem-solving and the need for structured, logical thinking. While large language models (LLMs) have made…

This AI Paper Explores Long Chain-of-Thought Reasoning: Enhancing Large Language Models with Reinforcement Learning and Supervised Fine-Tuning

Large language models (LLMs) have demonstrated proficiency in solving complex problems across mathematics, scientific research, and software engineering. Chain-of-thought (CoT) prompting is pivotal in guiding models through intermediate reasoning steps…

LLMDet: How Large Language Models Enhance Open-Vocabulary Object Detection

Open-vocabulary object detection (OVD) aims to detect arbitrary objects with user-provided text labels. Although recent progress has enhanced zero-shot detection ability, current techniques handicap themselves with three important challenges. They…

Zyphra Introduces the Beta Release of Zonos: A Highly Expressive TTS Model with High Fidelity Voice Cloning

Text-to-speech (TTS) technology has made significant strides in recent years, but challenges remain in creating natural, expressive, and high-fidelity speech synthesis. Many TTS systems struggle to replicate the nuances of…

Google DeepMind Introduces AlphaGeometry2: A Significant Upgrade to AlphaGeometry Surpassing the Average Gold Medalist in Solving Olympiad Geometry

The International Mathematical Olympiad (IMO) is a globally recognized competition that challenges high school students with complex mathematical problems. Among its four categories, geometry stands out as the most consistent…

Efficient Alignment of Large Language Models Using Token-Level Reward Guidance with GenARM

Large language models (LLMs) must align with human preferences like helpfulness and harmlessness, but traditional alignment methods require costly retraining and struggle with dynamic or conflicting preferences. Test-time alignment approaches…

Adaptive Inference Budget Management in Large Language Models through Constrained Policy Optimization

Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks, particularly in mathematical problem-solving and coding applications. Research has shown a strong correlation between the length of reasoning…

Tutorial to Fine-Tuning Mistral 7B with QLoRA Using Axolotl for Efficient LLM Training

In this tutorial, we demonstrate the workflow for fine-tuning Mistral 7B using QLoRA with Axolotl, showing how to manage limited GPU resources while customizing the model for new tasks. We’ll…